Catalyst QuickML
Catalyst QuickML is a no-code machine learning pipeline builder service that lets you implement a host of pre-built ML algorithms, operations, and data preprocessing techniques, and connect with datasets to build and publish ML models. After you publish the data pipeline and ML pipeline, you can access the models you create with authenticated endpoints.
Execute QuickML Endpoint
The code snippet given below allows you to pass input data to a published QuickML endpoint, and predict the outcome based on the ML model’s processing. The output returns the prediction of the values of the target column that is defined while creating the ML pipeline.
-
You will need to have the ML pipeline and the model’s endpoint configured and published in your project using the Catalyst console, before you execute this code to predict the outcome with the code snippet below.
-
QuickML is currently not available to Catalyst users accessing from the JP, SA or CA data centers.
The quickml component instance is created as shown below, which will not fire a server-side call. You can pass the input data to the model’s endpoint as key-value pairs. The endpoint_key mentioned below is the unique ID of the endpoint published for the ML model configured in your project. The endpoint key and the input data are passed to the predict() method for execution.
// input data
const input_data = {
// Enter column name and value as per your dataset
"column_name1": "value1",
"column_name2": "value2",
"column_name3": "value3"
}
// create a quickml instance
const quickml = app.quickML();
// execute predict method
const result = await quickml.predict("{endpoint_key}",input_data);
// Replace {endpoint_key} with the endpoint key copied from the catalyst console
console.log(result);
The syntax of the output received is shown below:
{
'status': 'success',
'result': ["results....."]
}
Last Updated 2025-09-23 19:47:43 +0530 IST
Yes
No
Send your feedback to us